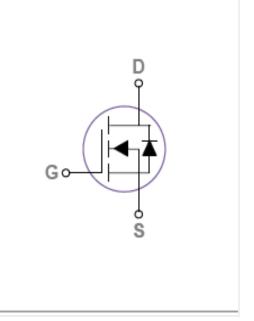
GSMDD4964

40V N-Channel MOSFETs

Product Description

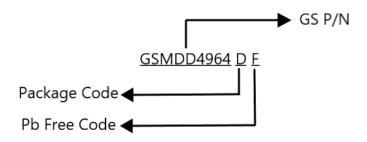
These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

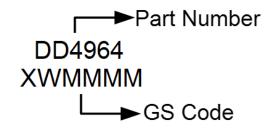
Features


- 40V, 60A, $R_{DS(ON)}=6.7m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- Green Device Available

Applications

- MB / VGA / Vcore
- POL Applications
- SMPS 2nd SR


Packages & Pin Assignments



Ordering Information

Part Number	Package	Quantity Reel
GSMDD4964DF	TO-252	2500 PCS

Marking Information

Absolute Maximum Ratings Tc=25°C Unless otherwise noted

Symbol	Parameter		Typical	Unit
V _{DS}	Drain-Source Voltage		40	V
Vgs	Gate-Source Voltage		±20	V
	Continuous Drain Current	Tc=25°C	60	A
ID		Tc=100°C	38	
I _{DM}	Pulsed Drain Current		240	Α
	Power Dissipation (Tc=25°C)		62	W
P _D	Power Dissipation (Derate above 25℃)		0.496	W/°C
TJ	Operating Junction Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$
Tstg	Storage Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient		62	°C/W
R _{eJC}	Thermal Resistance-Junction to Case		2.01	°C/W
EAS	Single Pulse Avalanche Energy ²		76	mJ
IAS	Single Pulse Avalanche Current ²		39	Α

Electrical Characteristics

T_j =25°C Unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Static					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	40			V	
∆BV _{DSS} /∆TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C, I _D =1mA		0.03		V/°C	
V _{GS(th)}	Gate Threshold Voltage		1.2	1.6	2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{DS} =V _{GS} , I _D =250uA		-5		mV/ ℃	
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±20V			±100	nA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =40V, V _{GS} =0V T _J =25°C			1	uA	
		V _{DS} =32V, V _{GS} =0V, T _J =125°C			10		
Is	Continuous Source Current ²	V _G =V _D =0V,			60	A	
I _{SM}	Pulsed Source Current ²	Force Current			120		
R _{DS(on)}	Drain-Source On-Resistance ²	V _{GS} =10V, I _D =10A		5.7	6.7	mΩ	
		V _{GS} =4.5V, I _D =5A		7.0	8.8	mΩ	
g FS	Forward Transconductance	V _{DS} =10V, I _D =3A		16		S	
VsD	Diode Forward Voltage	V _{GS} =0V, I _S =1A T _J =25°C			1	V	
		Dynamic					
Qg	Total Gate Charge ^{2,3}			16.2	32	nC	
Qgs	Gate-Source Charge ^{2,3}	V _{DS} =20V, V _{GS} =4.5V, I _D =10A		3.85	7		
Q _{gd}	Gate-Drain Charge ^{2,3}	ID=TOA		6.05	12		
Ciss	Input Capacitance			1540	2500		
Coss	Output Capacitance	$V_{DS}=25V, V_{GS}=0V,$ f=1MHz		171	330	pF	
Crss	Reverse Transfer Capacitance	1=1101112		115	220		
t _{d(on)}	Turn-On Time ^{2,3}	V _{DD} =15V, I _D =1A,		13.6	25	ns	
tr	Turn-On Time ^{2,0}			2.5	5		
t _{d(off)}	Turn-Off Time ^{2,3}	$V_{GS}=10V, R_{G}=6\Omega$		68	120		
t _f	Turr-Oil Time-15			5	10		
R_g	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.2	2.2	Ω	

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed, pulse width ≤ 300 us, duty cycle $\leq 2\%$.
- 3. Essentially independent of operating temperature.
- 4. VDD=25V,VGS=10V,L=0.1mH,IAS=39A., Starting TJ=25°C

Typical Performance Characteristics

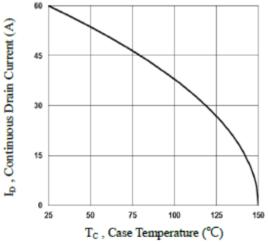


Fig.1 Continuous Drain Current vs. T_c

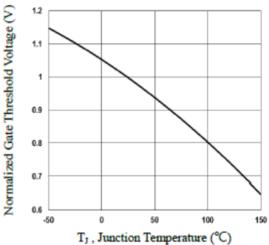


Fig.3 Normalized V_{th} vs. T_J

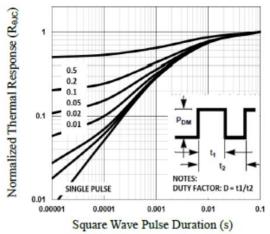


Fig.5 Normalized Transient Impedance

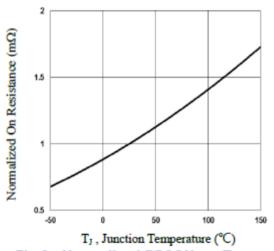


Fig.2 Normalized RDSON vs. TJ

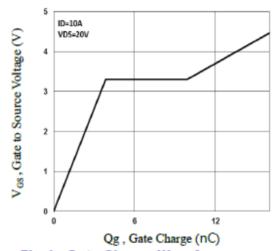


Fig.4 Gate Charge Waveform

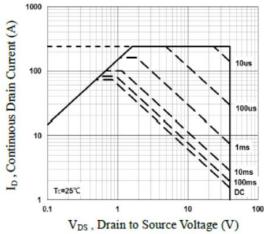


Fig.6 Maximum Safe Operation Area

Typical Performance Characteristics (Continue)

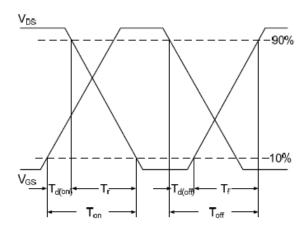
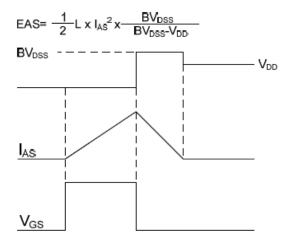
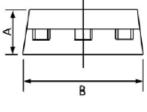
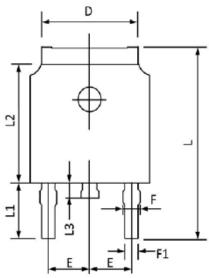
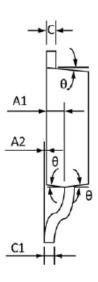


Fig.7 Switching Time Waveform




Fig.8 EAS Waveform


Package Dimension



Package Dimension

TO-252-2L

Crymbal	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	MAX	MIN	MAX	MIN
A	2.400	2.200	0.094	0.087
A1	1.110	0.910	0.044	0.036
A2	0.150	0.000	0.006	0.000
В	6.800	6.400	0.268	0.252
C	0.580	0.450	0.023	0.018
C1	0.580	0.460	0.023	0.018
D	5.500	5.100	0.217	0.201
E	2.386	2.186	0.094	0.086
F	0.940	0.600	0.037	0.024
F1	0.860	0.500	0.034	0.020
L	10.400	9.400	0.409	0.370
L1	3.000	2.400	0.118	0.094
L2	6.200	5.400	0.244	0.213
L3	1.200	0.600	0.047	0.024
θ	9°	3°	9°	3°

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
6	886-2-2657-9980		
[]·\	886-2-2657-3630		
@	sales_twn@gs-power.com		
	RD Division		
\\	824 Bolton Drive Milpitas. CA. 95035		
6	1-408-457-0587		

