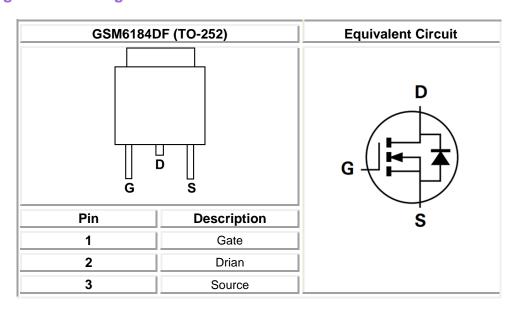
GSM6184DF

60V N-Channel Enhancement Mode MOSFET

Product Description

The N-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

The device is well suited for high efficiency fast switching applications.


Features

- $R_{DS(ON)}=92m\Omega@V_{GS}=10V$
- \blacksquare R_{DS(ON)}=100m Ω @V_{GS}=4.5V
- Improved dv/dt capability
- Fast switching
- 100% EAS guaranteed.

Applications

- Motor Drive
- Power Tools
- LED Lighting

Packages & Pin Assignments

Ordering and Marking Information

Ordering Information					
Part Number	Package	Part Marking	Quantity / Reel		
GSM6184DF	TO-252	TO-252 6184D			
GSM6184 1 2	GSM6184 1 2				
- Product Code: GSM6184	- Package Code: - Green Level: 1 is D for TO-252 2 is F for RoHS Comand Halogen Free		for RoHS Compliant		
	Marking Ir	nformation			
- Product Code: 6184D - GS Code:					

Absolute Maximum Ratings

 $T_A=25^{\circ}C$, unless otherwise specified

Symbol	Parameter Parameter		Value	Unit
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		±20	V
	Continuous Drain Current ¹	Tc=25°C	10	A
		Tc=100°C	6	
l _D		T _A =25°C	3	
		T _A =70°C	2	
I _{DM}	Pulsed Drain Current ²		20	Α
I _{AS}	Single Pulse Avalanche Current		11.2	Α
E _{AS}	Single Pulse Avalanche Energy ³		6.3	mJ
	P _D Total Power Dissipation ⁴	T _C =25°C	20.8	W
		T _C =100°C	8.3	
PD		T _A =25°C	2	
		T _A =70°C	1.2	
TJ	Operating Junction Temperature		-55 to +150	°C
T _{STG}	Storage Temperature Range		-55 to +150	°C
R _{eJC}	Thermal Resistance, Junction to Case ¹		6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ¹		62	°C/W

Electrical Characteristics

T_A=25°C, unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Static	characteristics				
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	60	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V	-	-	1	uA
I _{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1	-	3	V
D	Dunin Course On Besistance ²	V _{GS} =10V, I _D =6A	-	85	92	mΩ
R _{DS(ON)}	Drain-Source On-Resistance ²	V _{GS} =4.5V, I _D =3A	-	90	100	
g FS	Forward Transconductance	V _{DS} =10V, I _D =3A	-	3.6	-	S
	Dynami	ic characteristics				
Ciss	Input Capacitance		-	511	-	
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz	-	38	-	pF
Crss	Reverse Transfer Capacitance	= I IVITIZ	-	25	-	
Qg	Total Gate Charge		-	4.9	-	
Q _{gs}	Gate-Source Charge	V _{DS} =48V, V _{GS} =4.5V, I _D =10A	-	1.8	-	nC
Q_{gd}	Gate-Drain Charge	ID=TOA	-	2.2	-	
t _{d(on)}	Turn-On Delay Time		-	6	-	
t _r	Turn-On Rise Time	V _{DD} =30V, I _D =3A,	-	9	-	j
t _{d(off)}	Turn-Off Delay Time	V _{GS} =4.5V, R _G =3.3Ω	-	18	-	ns
t _f	Turn-Off Fall Time		-	5	-	
	Diode	characteristics				
VsD	Diode Forward Voltage ²	V _{GS} =0V, I _S =10A	-	-	1.4	V
ls	Continuous Source Current ¹	V _G =V _D =0V, Force Current	-	-	10	А
trr	Reverse Recovery Time	I _S =3A, V _{GS} =0V	-	19	-	ns
Qrr	Reverse Recovery Charge	dl/dt=100A/µs	-	28	-	nC

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2% 3. The E_{AS} data shows Max. rating. The test condition is V_{DD}=25V, V_{GS}=10V, L=0.1mH, I_{AS}=11.2A
- The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

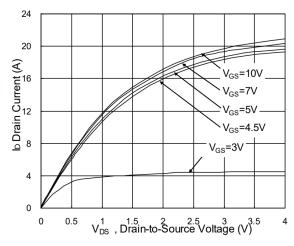


Fig 1. Output Characteristics

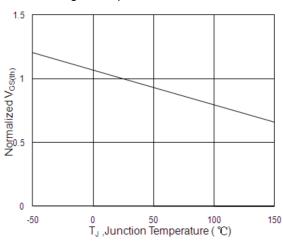


Fig. 3 Normalized Gate Threshold Voltage

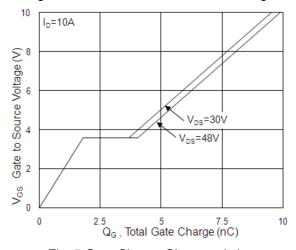


Fig. 5 Gate Charge Characteristics

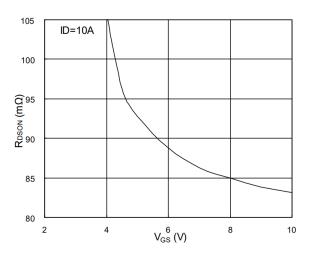


Fig. 2 On-Resistance vs. Gate Source

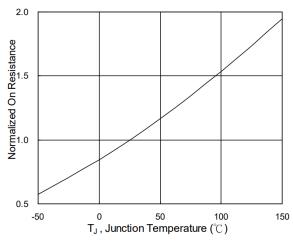


Fig. 4 Normalized On-Resistance

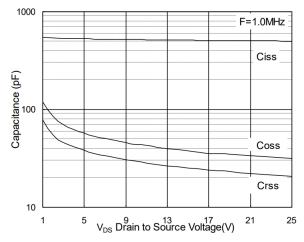
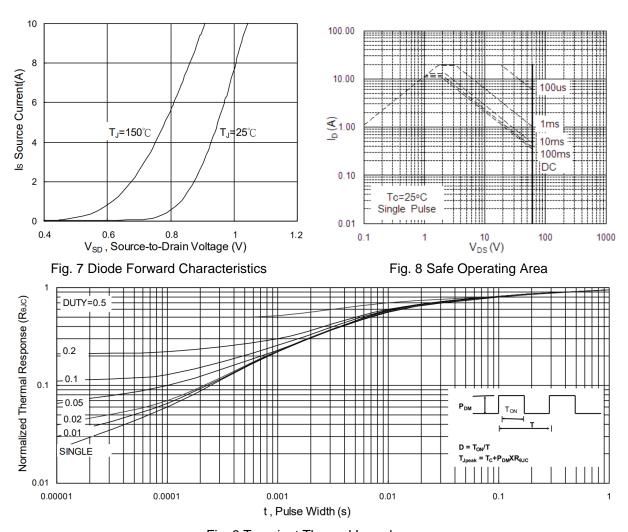
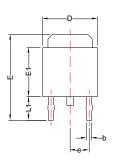
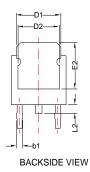
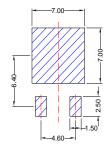


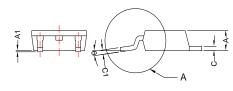
Fig. 6 Typical Capacitance

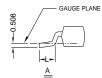
Typical Performance Characteristics


Fig. 9 Transient Thermal Impedance


TO-252


Package Dimension



Recommended Land Pattern

	Dimensions			
Symbol	Millimeters		Inches	
	MIN	MAX	MIN	MAX
Α	2.18	2.40	0.086	0.094
A 1	0.00	0.15	0.000	0.006
b	0.50	0.90	0.020	0.035
С	0.45	0.89	0.018	0.035
c 1	0.40	0.61	0.016	0.024
D	6.35	6.80	0.250	0.268
D1	4.95	5.50	0.195	0.217
D2	3.81	-	0.150	-
Е	9.40	10.41	0.370	0.410
E1	5.33	5.80	0.210	0.228
E2	4.57	-	0.180	-
е	2.286 BSC 0.090 BSC		BSC	
L	1.40	1.78	0.055	0.070
L1	2.4	3.00	0.094	0.118
θ	0°	8°	0°	8°

NOTE

Dimensions are exclusive of Burrs, Mold Flash & Tie Bar extrusions.

NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The information furnished is believed to be accurate and reliable. However, Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4F., No.43-1, Lane11, Sec.6, Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
E	886-2-2657-9980		
	886-2-2657-3630		
@	sales_twn@gs-power.com		

	RD Division
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	824 Bolton Drive Milpitas. CA. 95035
6	1-408-457-0587

