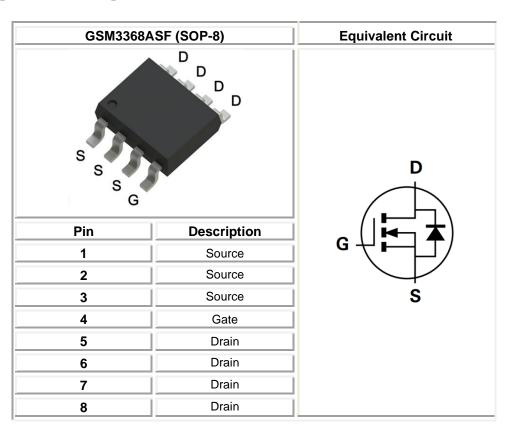
GSM3368ASF

30V N-Channel Enhancement Mode MOSFET

Product Description

The N-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

The device is well suited for high efficiency fast switching applications.


Features

- $R_{DS(ON)} = 6m\Omega$ @ $V_{GS} = 10V$
- $R_{DS(ON)} = 9.8 \text{m}\Omega$ @ $V_{GS} = 4.5 \text{V}$
- SOP-8 Package

Applications

- MB / VGA / Vcore
- POL
- SMPS

Packages & Pin Assignments

Ordering and Marking Information

Ordering Information				
Part Number	Package	Part Marking	Quantity / Reel	
GSM3368ASF	SOP-8	SOP-8 3368ASF		
GSM3368A 1 2				
- Product Code: GSM3368A			Level: or RoHS Compliant Halogen Free	
	Marking Ir	nformation		
- Product Code: 3368ASF - GS Code:				

Absolute Maximum Ratings

T_A=25°C, unless otherwise specified

Symbol	Parameter	Value	Unit		
V _{DSS}	Drain-Source Voltage		30	V	
V _{GSS}	Gate-Source Voltage		±20	V	
	Continuous Drain Current ¹	T _A =25°C	13	А	
lo		T _A =70°C	10		
I _{DM}	Pulsed Drain Current ²	65	Α		
	Total Davier Dissipation 3	T _A =25°C	1.5	10/	
P _D To	Total Power Dissipation ³	T _A =70°C	1	W	
TJ	Operating Junction Temperature Range	-55 to +150	°C		
Tstg	Storage Temperature Range	-55 to +150	°C		
ReJA	Thermal Resistance, Junction to Ambient ¹	80	°C/W		

- Note: 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2oz copper. 2.The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%. 3.The power dissipation is limited by 150°C junction temperature.

Electrical Characteristics

TA=25°C, unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Statio	characteristics				
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	-	-	V
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250µA	1.2	-	2.5	V
Igss	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
IDSS	Drain-Source Leakage Current	V _{DS} =30V, V _{GS} =0V	-	-	1	μA
Б	Dunin Course On Boninton	V _{GS} =10V, I _D =15A	-	4.2	6	
R _{DS(ON)}	Drain-Source On-Resistance	V _{GS} =4.5V, I _D =10A	-	5.6	9.8	mΩ
V _{SD}	Diode Forward Voltage	V _{GS} =0V, I _S =20A	-	-	1.2	V
	Dynamic characteristics					
Ciss	Input Capacitance		-	2295	-	
Coss	Output Capacitance Vps=15V, Ves=0V, f=1MHz		-	267	-	pF
Crss	Reverse Transfer Capacitance	-	-	210	-	
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz	-	1.7	-	Ω
Q_g	Total Gate Charge		-	39	-	
Q_{gs}	Gate-Source Charge	V _{DS} =15V, V _{GS} =10V,	-	7.6	-	nC
Q_{gd}	Gate-Drain Charge	ID=TOA	-	7.2	-	
t _{d(on)}	Turn-On Delay Time		-	7.8	-	
t _r	Turn-On Rise Time	V _{DS} =15V, V _{GS} =10V,	-	15	-	
t _{d(off)}	Turn-Off Delay Time	rn-Off Delay Time Rg=3.3Ω, I _D =10A		37	-	ns
t _f	Turn-Off Fall Time		- 1	11	-	

Typical Performance Characteristics

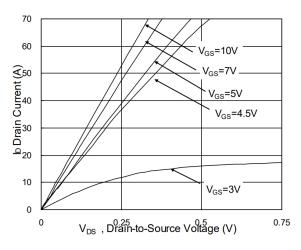


Figure 1. Typical Output Characteristics

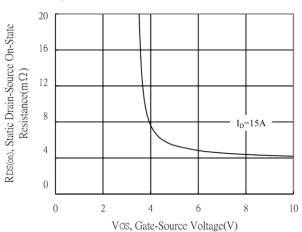


Figure 3. Drain-Source On-State Resistance vs Gate-Source Voltage

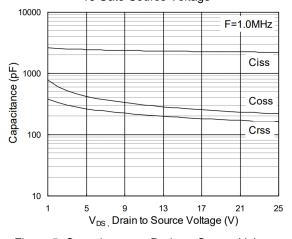


Figure 5. Capacitance vs Drain-to-Source Voltage

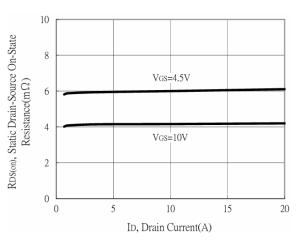


Figure 2. Drain-Source On-State resistance vs Drain Current

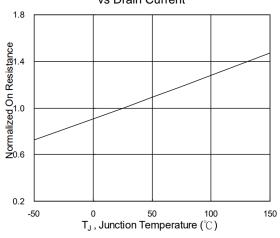


Figure 4. Drain-Source On-State Resistance vs Junction Temperature

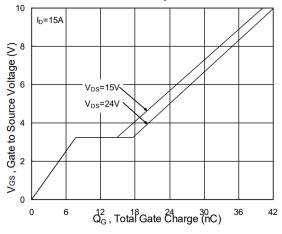


Figure 6. Gate Charge

Typical Performance Characteristics

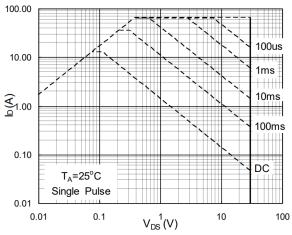


Figure 7. Maximum Safe Operating Area

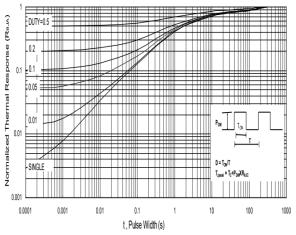
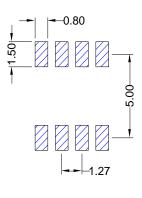


Figure 8. Normalized Transient Thermal Resistance



SOP-8

Package Dimension

GAUGE PLANE

Recommended Land Pattern

	Dimensions				
Or made al	Millimeters		Inches		
Symbol	MIN	MAX	MIN	MAX	
Α	-	1.75	-	0.069	
A 1	0.10	0.25	0.004	0.010	
A2	1.25	-	0.049	-	
b	0.31	0.51	0.012	0.020	
С	0.10	0.25	0.004	0.010	
D	4.70	5.10	0.185	0.201	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050 BSC		
L	0.4	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

NOTE:

DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END.

NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The information furnished is believed to be accurate and reliable. However, Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
	886-2-2657-9980		
Q•	886-2-2657-3630		
@	sales_twn@gs-power.com		

RD Division		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	824 Bolton Drive Milpitas. CA. 95035	
E	1-408-457-0587	

