- G.S.M.3.3.20XF

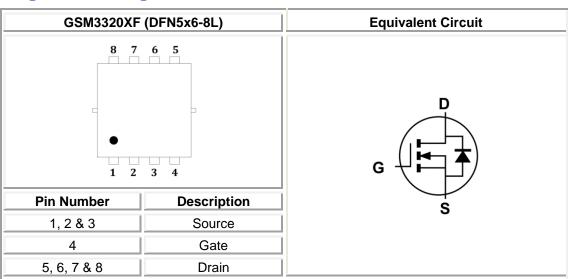
GSM3320XF

30V N-Channel MOSFETs

Product Description

The GSM3320XF is an N-channel enhancement mode power MOSFET uses trench DMOS technology.

It has been especially tailored to minimize on-state resistance and provides a superior switching performance that is well suited for high efficiency fast switching applications.


Features

- Low R_{DS(ON)}
- DFN5x6-8L package
- RoHS Compliant and Halogen Free

Applications

- Power Management Application
- DC-DC Converter
- Power Load Switch

Packages & Pin Assignments

Ordering and Marking Information

Ordering Information				
Part Number	Package	Part Marking	Quantity / Reel	
GSM3320XF	DFN5x6-8L	3320XF	3,000 PCS	

GSM3320 1 2

- Product Code: GSM3320
- Package Code:
 - 1 is **X** for DFN5x6-8L
- Green Level:
 - 2 is **F** for RoHS Compliant and Halogen Free

Marking Information

3320 1 2 3 3 3 3 3 3

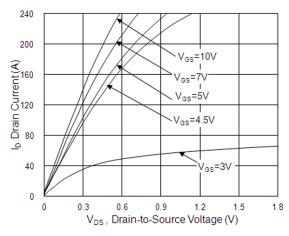
- Product Code: 3320
- Package Code: 1 is **X** for DFN5x6-8L
- Green Level:
 - 2 is **F** for RoHS Compliant and Halogen Free

- **GS Code: 3333333**3 is GS Code

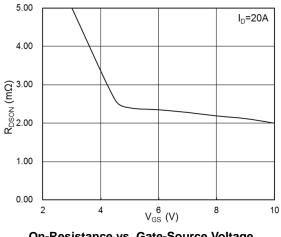
Absolute Maximum Ratings (T_A=25°C Unless otherwise specified)

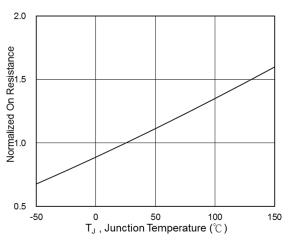
Symbol	Parameter		Rating	Unit
V _{DS}	Drain-Source Voltage		30	V
V _G s	Gate-Source Voltage		±20	V
I _D Continuous Drain Curre	Continuous Dusin Comment 4	Tc=25°C	85	А
	Continuous Drain Current	Tc=100°C	66	
I _{DM}	Pulsed Drain Current ²		240	Α
Eas	Avalanche Energy, Single pulse 3		144	mJ
_	Power Dissipation Tc=25°C		73	W
P _D	Power Dissipation T _C =100°C		29	W
TJ	Operating Junction Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$
Tstg	Storage Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$
R _{eJC}	Thermal Resistance-Junction to Case		1.7	°C/W
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient ¹		62	°C/W

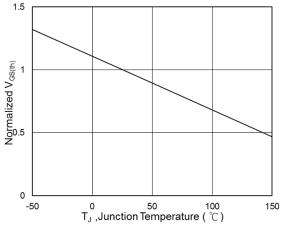
Electrical Characteristics (T_A=25°C Unless otherwise specified)

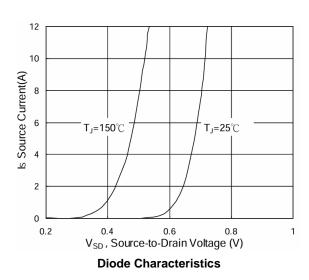

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	-	Static					
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30			V	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1.2	1.6	2.5	V	
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±20V			±100	nA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =30V, V _{GS} =0V			1	uA	
Ь	Drain-Source On-Resistance	V _{GS} =10V, I _D =20A		2.0	2.6	mΩ	
R _{DS(on)}		V _{GS} =4.5V, I _D =15A		2.7	3.8		
g FS	Forward Transconductance	V _{DS} =10V, I _D =5A		24		S	
VsD	Diode Forward Voltage	V _{GS} =0V, I _S =1A			1	V	
Is	Continuous Source Current	V _G =V _D =0V, Force Current			73	А	
		Dynamic					
Q_g	Total Gate Charge			112		nC	
Q_{gs}	Gate-Source Charge	V _{DS} =15V, V _{GS} =10V, I _D =15A		13.8			
Q_{gd}	Gate-Drain Charge			23.5			
C _{iss}	Input Capacitance			4345			
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		340		pF	
C _{rss}	Reverse Transfer Capacitance	1-11/11/12		225			
t _{d(on)}	J			20.1			
t _r	Turn-On Time	V _{DD} =15V, I _D =1A,		6.3		ns	
$t_{\text{d(off)}}$		$V_{GS}=10V$, $R_{G}=3.3\Omega$		124.6			
t _f	Turn-Off Time			15.8			
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.7		Ω	

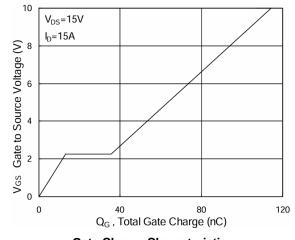
NOTE:


- Device mounted on FR4 board with 1 inch², 2 oz. Cu.
 Pulse width ≤ 300us, duty cycle ≤ 2%
 The test condition is V_{DD}=20V,V_{GS}=10V,L=0.5mH,I_{AS}=24A
 The maximum current rating is package limited

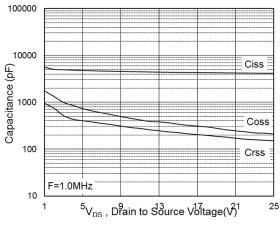

Typical Performance Characteristics

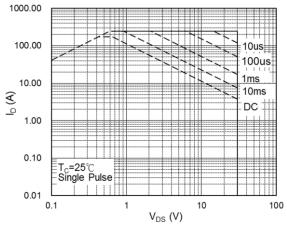

Output Characteristics

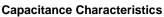

On-Resistance vs. Gate-Source Voltage

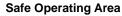


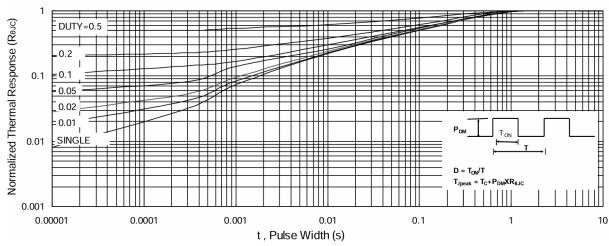
Normalized On-Resistance vs. Temperature



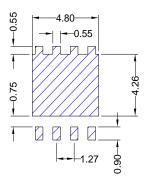

Normalized V_{GS(th)} vs. Temperature



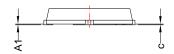



Gate Charge Characteristics

Normalized Maximum Transient Thermal Impedance



DFN5x6-8L


Package Dimension

Pin1 BACKSIDE VIEW

Recommended Land Pattern

	Dimensions				
Ol	Millimeters		Inches		
Symbol	MIN	MAX	MIN	MAX	
Α	0.80	1.20	0.031	0.047	
A 1	0.00	0.05	0.000	0.002	
b	0.25	0.51	0.010	0.020	
С	0.20	0.35	0.008	0.014	
D	4.90	5.40	0.193	0.213	
D1	3.40	4.60	0.134	0.181	
E	5.90	6.20	0.232	0.244	
E1	5.40	5.90	0.213	0.232	
E2	3.20	3.80	0.126	0.150	
E3	0.40	0.80	0.016	0.031	
е	1.27 BSC		0.050 BSC		
L	0.1	0.25	0.004	0.010	
L1	0.45	0.75	0.018	0.030	
L2	-	0.15	-	0.006	

NOTE:

Dimensions are exclusive of Burrs, Mold Flash & Tie Bar extrusions.

NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes
 no representation or warranty that such applications will be suitable for the specified use without further
 testing or modification.
- Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
\(\frac{1}{1}\)	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
	886-2-2657-9980		
Q	886-2-2657-3630		
@	sales_twn@gs-power.com		

	RD Division		
\: <u>:</u> :	824 Bolton Drive Milpitas. CA. 95035		
E	1-408-457-0587		

