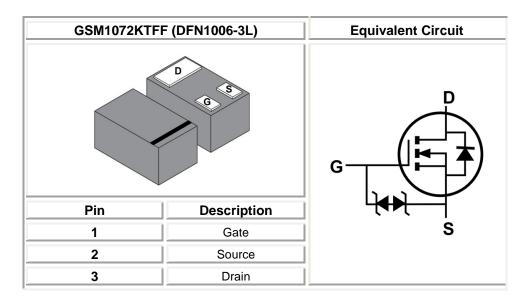
GSM1072KTFF 20V N-Channel Enhancement Mode MOSFET

Product Description

GSM1072KTFF, N-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent $R_{DS(ON)}$, low gate charge.

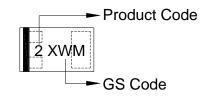

The device is particularly suited for low voltage power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.

Features

- RDS(ON) = 350mΩ @VGS = 4.5V
- $R_{DS(ON)} = 450 m\Omega @V_{GS} = 2.5V$
- R_{DS(ON)} = 700mΩ @V_{GS} = 1.8V
- R_{DS(ON)}= 1200mΩ@V_{GS} = 1.5V
- ESD Protected
- DFN1006-3L Package design

Applications

- Power Management in Notebook
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter


Packages & Pin Assignments

Ordering & Marking Information

Part Number	Package	Part Marking	Quantity / Reel
GSM1072KTFF	DFN1006-3L	2	10,000 PCS

- Package Code TF : DFN1006-3L
- Green Level F : RoHS and Halogen Free

Absolute Maximum Ratings

 $T_A=25^{o}C$, unless otherwise specified

Symbol	Parameter	Value	Unit
VDSS	Drain-Source Voltage	20	V
V _{GSS}	Gate-Source Voltage	±10	V
lь	Continuous Drain Current	0.75	Α
Ідм	Pulsed Drain Current	3	A
ls	Continuous Source Current	0.3	A
PD	Total Power Dissipation	0.35	W
TJ	Operating Junction Temperature Range	-55 to +150	°C
Tstg	Storage Temperature Range	-55 to +150	°C

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
	Static	characteristics		-				
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	20	-	-	V		
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	0.3	-	1	V		
lgss	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±10V	-	-	±10	μA		
		V _{DS} =20V, V _{GS} =0V	_{IS} =20V, V _{GS} =0V - 1					
IDSS	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V T _J =85°C	-	-	30	μA		
		V _{GS} =4.5V, I _D =0.5A	-	210	350	mΩ		
P	Desia Osuma Os Desistanas	V _{GS} =2.5V, I _D =0.4A	-	300	450			
Rds(on)	Drain-Source On-Resistance	V _{GS} =1.8V, I _D =0.2A	-	420	700			
		V _{GS} =1.5V, I _D =0.1A	-	600	1200			
g fs	Forward Transconductance	V _{DS} =10V, I _D =0.4A	-	1.0	-	S		
V_{SD}	Diode Forward Voltage	I _S =0.15A, V _{GS} =0V	-	0.8	1.2	V		
	Dynami	c characteristics						
Qg	Total Gate Charge		-	0.73	-			
Qgs	Gate-Source Charge	V _{DS} =10V, V _{GS} =4.5V, I _{D=} 0.25A	-	0.93	-	nC		
Q _{gd}	Gate-Drain Charge	VG3= 1.0 V, 10=0.20/V	-	0.12	-			
Ciss	Input Capacitance		-	60.7	-			
Coss	Output Capacitance	V _{DS} =16V, V _{GS} =0V	-	9.7	-	pF		
Crss	Reverse Transfer Capacitance	f=1MHz	-	5.4	-			
t _{d(on)}	Turn-On Delay Time		-	5.1	-			
tr	Turn-On Rise Time	$V_{DD}=10V, R_{L}=47\Omega,$	-	7.4	-	ns		
t _{d(off)}	Turn-Off Delay Time	I _{D=} 0.2A, V _{GS} =4.5V, R _G =10Ω	-	26.7	-			
t _f	Turn-Off Fall Time		-	12.3	-			

Typical Performance Characteristics

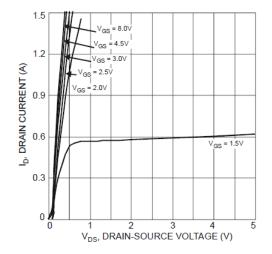


Fig. 1 Typical Output Characteristics

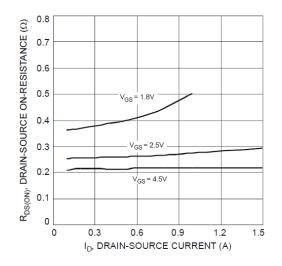


Fig. 3 Typical On-Resistance vs. I_D and V_{GS}

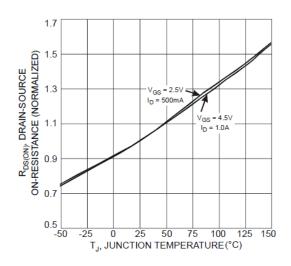


Fig. 5 On-Resistance Variation with T_J

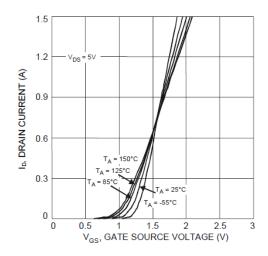


Fig. 2 Typical Transfer Characteristics

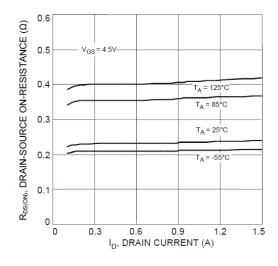
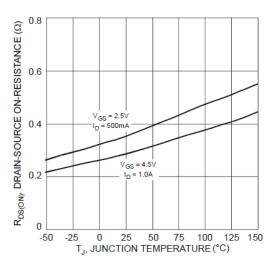
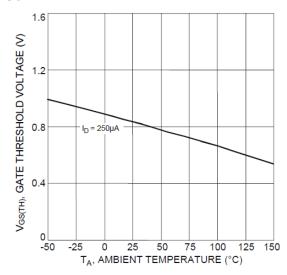
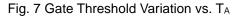
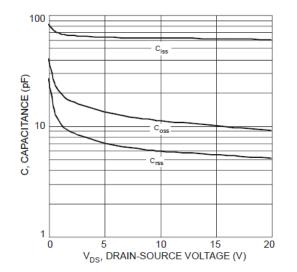
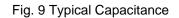


Fig. 4 Typical On-Resistance vs. ID and TJ


Fig. 6 On-Resistance Variation with $T_{\rm J}$


GLOBALTECH SEMICONDUCTOR

Typical Performance Characteristics

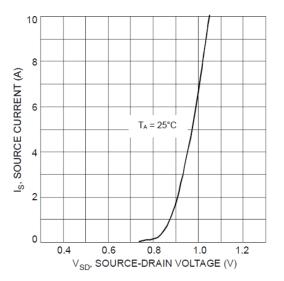


Fig. 8 Diode Forward Voltage vs. Current

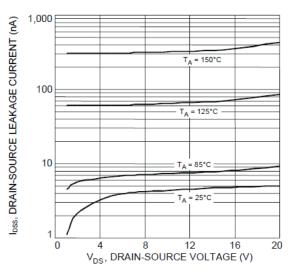
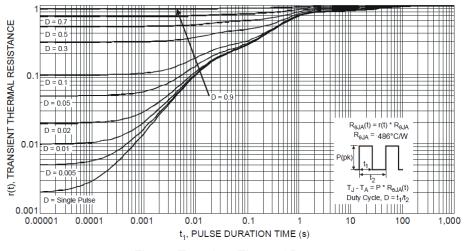
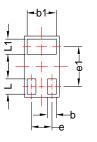
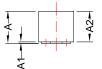


Fig. 10 Typical Drain-Source Leakage Current vs. Drain-Source Voltage




Fig. 11 Transient Thermal Response

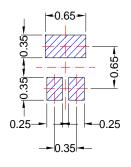

DFN1006-3L

Package Dimension

BACKSIDE VIEW

	Dimensions							
Cumhal	Millin	neters	Inches					
Symbol	MIN	МАХ	MIN	МАХ				
Α	0.45	0.60	0.018	0.024				
A1	0.00	0.05	0.000	0.002				
A2	0.40	0.60	0.016	0.024				
b	0.10	0.20	0.004	0.008				
b1	0.45	0.55	0.018	0.022				
D	0.55	0.65	0.022	0.026				
E1	0.95	1.05	0.037	0.041				
е	0.35	BSC	0.014 BSC					
e1	0.65	BSC	0.026 BSC					
L	0.20	0.30	0.008	0.012				
L1	0.20	0.30	0.30 0.008 0.0					

NOTE:


GL

DIMENSION D AND E1 DO NOT INCLUDE MOLD FLASH, TIE BAR BURRS, GATE BURRS, AND INTERLEAD FLASH, NOT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

6

Recommended Land Pattern

0	3	A	Ľ	Г	E	C	;}	ł
		N						

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter					
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)					
Go	886-2-2657-9980					
0	886-2-2657-3630					
@	sales_twn@gs-power.com					

RD Division							
	824 Bolton Drive Milpitas. CA. 95035						
G	1-408-457-0587						

