GS2806LF 500mA Adjustable Low Dropout Regulator

Product Description

The GS2806LF is a highly precise, low noise, positive voltage LDO regulator manufactured using CMOS processes. It achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limit, and a phase compensation circuit plus a driver transistor. External output feedback, customers can easily get the required voltage. In order to make the load current does not exceed the current capacity of the output transistor, built-in over-current protection, over temperature protection and short circuit protection.

The GS2806LF is available in SOT-23-5L surface mount packages.

Features

- Vin range up to 6.5V
- PSRR is 70dB @ 1KHz typically
- Output Voltage can be programmed to min.
 1.0V
- Output Voltage Accuracy ±2%
- Output Current of 500mA
- Internal Thermal Protection
- Internal Current Limit and Short Circuit Protection

Applications

- Battery Powered Equipment
- Hand-Held Instruments
- Portable Information Application

Functional Block Diagram

Packages & Pin Assignments

SOT-23-5L

Pin Name	Pin Description	
IN	Input Power	
GND	Ground Pin.	
EN	Enable Pin. "High" to turn on the IC.	
FB	The reference voltage is 0.8V.	
OUT	The pin is the power output of the device.	

Ordering & Marking Information

Ordering Information				
Part Number	Package Marking 0		Quantity / Reel	
GS2806LF	SOT-23-5L	NB	3,000 PCS	
GS280612				
Product Name:Package CodeGS28061 is L for SC		e: Gr T-23-5L 2 Co	een Level:] is F stands for RoHS mpliant and Halogen Free	
	Marking Information			
NB111 Product Code: NB	GS Code: 1111 is G	S Code		

Absolute Maximum Ratings 1, 2 (TA=25°C, unless otherwise specified.)

Symbol	Description	Range	Unit
Vin	Supply Voltage	8	V
PD	Power Dissipation ³	0.5	W
Reja	Thermal Resistance Junction to Ambient ^{4,5}	240	°C/W
TJ	Junction Temperature	150	°C
TLEAD	Lead Temperature (Soldering) 10 Sec.	260	°C
Tstg	Storage Temperature Range	-50 to +150	°C

Recommended Operating Conditions

V _{IN}	Max Supply Voltage ⁶	6.5	V
Vout	Output Voltage Range	1.0 - 4.0	V
TA	Operating Ambient Temperature Range	-40 to +85	°C
Іоит	Output Current	0 - 500	mA

Note:

- 1. Exceeding these ratings may damage the device.
- 2. The device is not guaranteed to function outside of its operating conditions.
- Exceeding the maximum allowable power dissipation causes excessive die temperature, and the regulator goes into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at T_J=155°C (typical) and disengages at T_J= 140°C (typical).
- 4. The package thermal impedance is calculated in accordance to JESD 51-7.
- 5. Thermal Resistances were simulated on a 4-layer, JEDEC board
- All limits specified at room temperature (T_A = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vin	Supply Voltage Range	-	-	-	6.5	V
IOUT	Output Current	V _{IN} =V _{OUT} +1.0 V	-	500	-	mA
lq	Quiescent Current	V _{IN} =V _{OUT} +1.0 V	-	80	-	μA
I _{SD}	Shutdown Current	$V_{IN}=5V, V_{EN}=0$	-	-	0.5	μA
Vfb	Feedback Voltage	-	784	800	816	mV
		lout=100mA, Vout=3.3V	-	70	-	
	Dropout Voltage	lout=500mA, Vout=3.3V	-	350	-	mV
VDROP		lout=100mA, Vout=2.5V	-	80	-	
		lout=500mA, Vout=2.5V	-	540	-	
Icl	Current Limit	-	510	-	-	mA
RLine	Line Regulation	Vout +1V< Vin < 6.5V Iout = 300mA	-	0.2	0.6	%/V
RLoad	Load Regulation	$VI_N = V_{OUT} + 1V$ 50mA < lout < 300mA	-	0.5	2	%
PSRR	Power Supply Rejection Ratio	Vout=2.5V lout=10mA, f=1KHz	-	70	-	dB
Venhi	Enable Pin	-	1.0	-	-	V
VENLO	Threshold	-	-	-	0.4	V
T _{SD}	Thermal Shutdown	-	-	155	-	°C
	Thermal Shutdown Hysteresis	-	-	15	-	°C

Electrical Characteristics (TA=25°C, unless otherwise specified.)

Typical Performance Characteristics (TA=25°C, unless otherwise specified.)

Fig 5. PSRR (V_{IN}=3.3V, V_{OUT}=1.2V, I_{OUT}=20mA)

Fig 7. Vin Start Up (V_{IN}=3.3V, V_{OUT}=2.5V, I_{OUT}=1mA)

Fig 4. Line Regulation

Fig 6. PSRR

(V_{IN} =5V, V_{OUT} =3.3V, I_{OUT} =20mA)

Fig 8. EN Start Up (V_{IN}=3.3V, V_{OUT}=2.5V, I_{OUT}=1mA)

Typical Application Circuit

Application Information

Setting the Output Voltage

GS2806 required an input capacitor and an output capacitor. These components are critical to the performance of the device. The output voltage can be programmed by resistor divider.

Vout(V)	R1(KΩ)	R2(KΩ)	C _{IN} (µF)	C _{OUT} (µF)
1	25.00	100	1~10	10
1.05	31.25	100	1~10	10
1.2	50.00	100	1~10	10
1.5	87.50	100	1~10	10
1.8	125.00	100	1~10	10
2.5	212.50	100	1~10	10
2.8	250.00	100	1~10	10
3.3	312.50	100	1~10	10

$$V_{OUT} = V_{FB} \times \frac{R1 + R2}{R2}$$

Low ESR Capacitor

With the GS2806, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (C_{OUT}) is connected as close as possible to the output pin (V_{OUT}) and the GND pin. Please use an output capacitor with a capacitance value of 10uF. Also, please connect an input capacitor (C_{IN}) of 10uF between the V_{IN} pin and the GND pin in order to ensure a stable power input. Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

Current Limiter, Short Circuit Protection

GS2806 includes a combination of a fixed current limiter circuit & a feedback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop-in output voltage, the feedback circuit operates, output voltage drops further and output current decreases.

Enable Pin

The IC's internal circuitry can be shutdown via the signal from the EN pin. Driving EN over 1 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode. The operational logic of the IC's EN pin is selectable.

Note that as the regulator operations will become unstable with the EN pin open. We suggest that you use this IC with either a V_{IN} voltage or a GND voltage input at the EN pin. If this IC is used with the correct specifications for the EN pin, the operational logic is fixed and the IC will operate normally.

Notes of Use

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between V_{IN} and GND wiring.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_{OUT}) as close to the IC as possible.

SOT-23-5L

Package Dimension

Recommended Land Pattern

	Dimensions				
O week al	Millin	neters	Inches		
Symbol	MIN	MAX	MIN	MAX	
Α	0.90	1.45	0.035	0.057	
A1	0.00	0.15	0.000	0.006	
A2	0.90	1.30	0.035	0.051	
b	0.30	0.50	0.012	0.020	
С	0.08	0.26	0.003	0.010	
D	2.70	3.10	0.106	0.122	
E	2.20	3.00	0.087	0.118	
E1	1.30	1.75	0.051	0.069	
е	0.95	BSC	0.037 BSC		
e1	1.90 BSC		0.075	BSC	
L	0.30	0.60	0.012	0.024	
θ	0°	8°	00	8°	

NOTE:

DIMENSION D and E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25mm PER END.

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor
 makes no representation or warranty that such applications will be suitable for the specified use without
 further testing or modification.
- Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

GS Headquarter		
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)	
Go	886-2-2657-9980	
	886-2-2657-3630	
0	sales_twn@gs-power.com	

	RD Division
	824 Bolton Drive Milpitas. CA. 95035
Fo	1-408-457-0587

