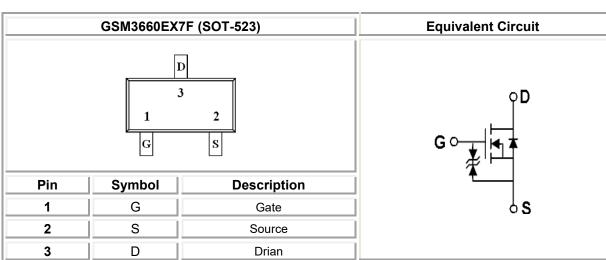
GSM3660EX7F

30V N-Channel MOSFET

Product Description

GSM3660E, N-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent $R_{DS(ON)}$, low gate charge.

These devices are particularly suited for low voltage power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.


Features

- Low Gate Charge
- ESD Protected
- SOT-523 Package
- RoHS Compliant and Halogen Free

Applications

- MB / VGA / Vcore
- POL Applications
- Load Switch
- LED Application

Package & Pin Assignment

Ordering and Marking Information

Ordering Information				
Part Number	Package	Package Part Marking Quantit		
GSM3660EX7F	SOT-523	<u>0</u> □□	3,000 PCS	
GSM3660E 1 2				
- Product Code: GSM3660E	- Package Code: - Green Level: 1 is X7 for SOT-523			
	Marking Ir	formation		
<u>0</u>	- Product Cod <u>0</u> - GS Code: □□	e:		

Absolute Maximum Ratings (T_A= 25°C unless otherwise specified)

Symbol	Parameter		Value	Unit
V _{DS}	Drain-Source Voltage		30	V
Vgs	Gate-Source Voltage		±12	V
I _D	Continuous Drain Current	T _A =25°C	0.51	Α
Ірм	Pulsed Drain Current 1,2		2	Α
PD	Power Dissipation	T _A =25°C	0.3	W
R _{0JA}	Thermal Resistance - Junction to Ambient		450	°C/W
TJ	Operating Junction Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$
T _{STG}	Storage Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$

- Surface mounted on a 1 inch2 FR-4 board with 2oz copper.
 Pulse width limited by maximum junction temperature, Pulse Width≤300µs, Duty Cycle≤1%.

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Static	characteristics				
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30			V
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	0.5		1.5	V
Igss	Gate Leakage Current	V _{DS} =0V, V _{GS} =±12V			10	uA
IDSS	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V			100	nA
		V _{GS} =10V, I _D =0.5A		355	600	
$R_{DS(on)}$	Drain-Source On-Resistance	V _{GS} =4.5V, I _D =0.4A		435	650	mΩ
		V _{GS} =2.5V, I _D =0.3A		665	1200	
g FS	Forward Transconductance	V _{DS} =10V, I _D =0.5A		1.1		S
V _{SD}	Diode Forward Voltage	Is=0.25A, V _{GS} =0V			1.35	V
	Gate cha	rge characteristics				
Qg	Total Gate Charge ^{3,4}			1.5		nC
Qgs	Gate-Source Charge ^{3,4}	V _{DS} =15V, V _{GS} =10V, I _D =0.5A		0.2		
Q _{gd}	Gate-Drain Charge ^{3,4}	ID-U.5A		0.2		
	Dynam	ic characteristics				
Ciss	Input Capacitance			39		
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V		9		pF
Crss	Reverse Transfer Capacitance f=1MHz			6		
t _{d(on)}	Turn-On Time			5.3		
t _r	Rise Time	V _{DD} =15V, I _D =0.5A,		16		ns
t _{d(off)}	Turn-Off Time	V_{GS} =10V, R_{G} =2.5 Ω		20		
t _f	Fall Time			18		i

Typical Performance Characteristics (T_A = 25°C unless otherwise specified)

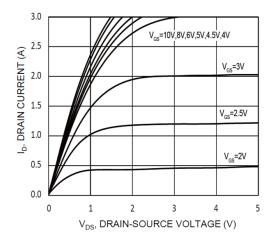


Fig.1 Output Characteristics

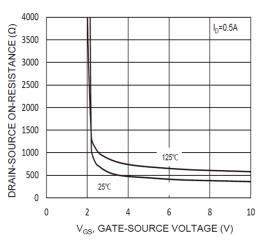


Fig.3 On-Resistance vs. V_{GS}

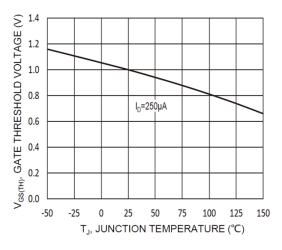
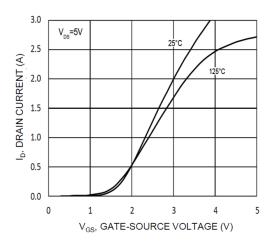



Fig.5 Normalized Threshold Voltage

Fig.2 Transfer Characteristics

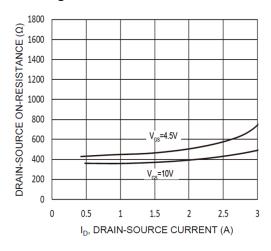


Fig.4 On-Resistance vs. ID

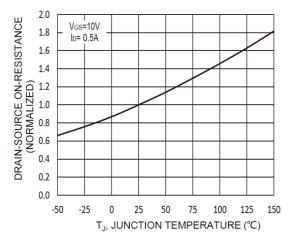


Fig.6 On-Resistance vs. T_J

Typical Performance Characteristics (Continued)

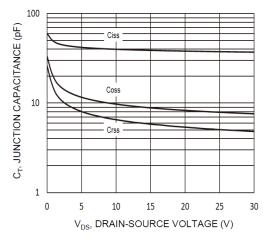


Fig.7 Capacitance

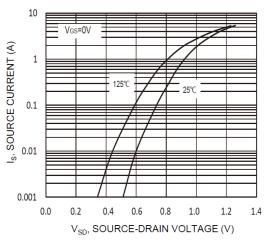


Fig.9 Diode Forward Voltage vs. Current

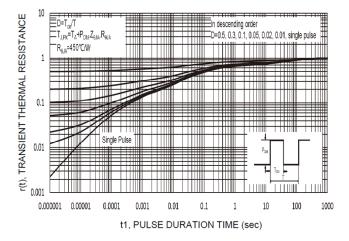


Fig.11 Normalized Transient Impedance

Fig.8 Gate Charge

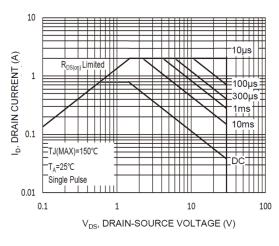
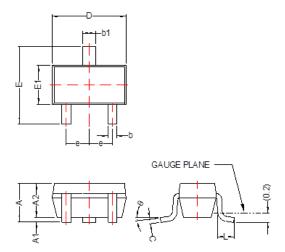
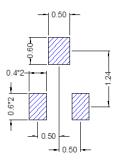



Fig.10 Safe Operation Area



SOT-523

Package Dimension

Recommended Land Pattern

Unit: mm

	Dimensions				
Compleal	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	0.60	0.95	0.024	0.037	
A 1	0.00	0.10	0.000	0.004	
A2	0.60	0.85	0.024	0.033	
b	0.15	0.30	0.006	0.012	
b1	0.25	0.40	0.010	0.016	
С	0.08	0.25	0.003	0.010	
D	1.40	1.80	0.055	0.071	
Е	1.40	1.80	0.055	0.071	
E1	0.70	0.90	0.028	0.035	
е	0.50 BSC		0.020 BSC		
L	0.26	0.46	0.010	0.018	
θ	0°	8°	0°	8°	

NOTE:

Dimensions are exclusive of Burrs, Mold Flash and Tie Bar extrusions.

NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4F, NO.43-1, Lane 11, Sec. 6, Minquan E. Rd Neihu District, Taipei City 114761, Taiwan (R.O.C).		
E	886-2-2657-9980		
Q	886-2-2657-3630		
@	sales twn@gs-power.com		

RD Division		
\	824 Bolton Drive Milpitas. CA. 95035	
6	1-408-457-0587	

